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ABSTRACT
We have, in this paper, developed a sequence of weighted linear regression estimators.
The proposed weighted linear regression estimator of order k, besides being endowed
with the predictive character, is found to be more efficient than the simple mean
estimator in one hand and the weighted linear regression estimator on the other
under optimality of k. Based on the theoretical developments, empirical illustrations
involving real-population data have been considered.
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1. Introduction

When the study variable y is positively correlated with the auxiliary variable x and
the regression line of y on x passes through the origin, then ratio estimator is used to
estimate the population mean Y or the population total Y provided complete infor-
mation is available for the auxiliary variable. But, if the study variable y is negatively
correlated with the auxiliary variable x, then product estimator is used to estimate
the population mean Y or the population total Y. When the regression line of y on x
is linear but the regression line does not pass through the origin, then linear regression
estimator is more appropriate than either the ratio or the product estimator from
the standpoint of efficiency. The regression estimator is originated from the difference
estimator given by

yd = y + β(X − x), (1)

where y is the sample mean of y - variable andX and x are, respectively, the population
mean and the sample mean of x - variable and β is a preassigned constant. The
estimator yd is unbiased for the population mean Y and it will attain its minimum
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variance given by

V (yd) =

(
1

n
− 1

N

)
S2
y

(
1− ρ2yx

)
(2)

when β coincides with the population regression coefficient of y on x.

Usually, β, the population quantity is unknown and is estimated by its corre-
sponding sample quantity byx, the sample regression coefficient. In the circumstances,
the usual linear regression estimator given by

ylr = y + byx(X − x) (3)

is attained.

Its bias and mean square error, to the first degree of approximation, i.e., to
o(n−1) have been expressed, respectively, as

B(ylr) =
N(N − n)

(N − 1)(N − 2)

βyx
n

[
µ300

Syx
− µ210

S2
x

]
(4)

and

M(yd) =

(
1

n
− 1

N

)
S2
y

(
1− ρ2yx

)
, (5)

where µpqr = 1
N

∑N
i=1(xi −X)p(yi − Y )q(zi − Z)r, S2

y is the population mean square
of y and ρyx is the population correlation coefficient between y and x.

Following Agrawal and Jain (1989), Sahoo et. al. (2007) have proposed a new
linear regression estimator by defining z = x−1(x > 0) as a transformed auxiliary
variable, which is given by

y∗lr = y + byz(Z − z), (6)

its bias and mean square error, to o(n−1 ), being

B(y∗lr) =
N(N − n)

(N − 1)(N − 2)

βyz
n

[
µ003

Syz
− µ012

S2
z

]
(7)

and

M(y∗lr) =

(
1

n
− 1

N

)
S2
y

(
1− ρ2yz

)
, (8)

where ρyz is the population correlation coefficient between y and z = x−1(x > 0).

Again, combining these two regression estimators Panda and Chattapadhyay
(2022) have considered a new weighted linear regression estimator, given by
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ywlr = w1ylr + w2y
∗
lr

⇒ ywlr = y + w1byx
(
X − x

)
+ w2byz

(
Z − z

)
, (9)

where w1 and w1 are weights such that w1 + w2 = 1 and x > 0.

The estimator is biased and its bias and mean square error, to o(n−1), are
given, respectively, by

B(ywlr) =
N(N − n)

n(N − 1)(N − 2

[
w1βyx

(
µ300

Syx
− µ210

S2
x

)
+ w2βyz

(
µ003

Syz
− µ012

S2
z

)]
(10)

and

M(ywlr) =

(
1

n
− 1

N

)[
1 + w2

1ρ
2
yx + w2

2ρ
2
yz − 2w1ρ

2
yx − 2w2ρ

2
yz + 2w1w2ρyxρyzρxz

]
,

(11)
where ρxz is the population correlation coefficient between x and z.

Minimization of (11) subject to variations in w’s yields

w1 opt =
ρ2yx − ρyxρyzρxz

ρ2yx + ρ2yz − 2ρyxρyzρxz
=

A

A+B
= 1− w1 opt, (12)

where A = ρ2yx − 2ρyxρyzρxz and B = ρ2yz − 2ρyxρyzρxz.

This proposed estimator performs better than the usual linear regression esti-
mator and the estimator due to Sahoo et. al. under certain conditions.

In this paper, invoking the predictive approach due to Basu(1971) followed by
Smith(1976) for a fixed population set-up and then, with recursive use of this intuitive
predictive format coupled with the technique due to Agarwal and Sthapit (1997),
we develop a hierarchic predictive weighted linear regression estimator which under
certain condition performs better than the customary weighted linear regression
estimator. Numerical investigations have been carried out to illustrate the application
of the work proposed here.

2. Predictive character of the proposed estimator

Under the predictive set-up, the population total Y is expressed as

Y =
∑
i∈s

yi +
∑
i∈s

yi, (13)
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where s denotes the sample and s is its complement. To estimate the population total
Y, we have to predict the second component of the right-hand side of equation (2.1),
which is unknown.

The usual predictive format for estimating Y, the population total, is

Ŷ =
∑
i∈s

yi +
∑
i∈s

ŷi, (14)

where ŷi is the implied predictor of yi,(i ∈ s).

Thus,

Ŷ =
∑
i∈s

yi +
∑
i∈s

ŷi

=
n

N
y +

1

N

∑
i∈s

[y + w1byx (xi − x) + w2byz (zi − z)]

= y +
1

N
+
[
w1byx

{(
NX − nx

)
− (N − n)x

}
+ w2byz

{(
NZ − nz

)
− (N − n) z

}]
= y + w1byx

(
X − x

)
+ w2byz

(
Z − z

)
⇒ Ŷ = ywlr

So, ywlr is predictive in form.

3. A sequence of predictive weighted linear regression estimators and
their performance

Using weighted linear regression estimator ywlr as an intuitive predictor of yi,(i ∈ s),
we reach

Ŷ =
∑
i∈s

yi + (N − n)ywlr

or,

Ŷ =
1

N

∑
i∈s

yi +
1

N
(N − n)ywlr = ywlr

(1), say,

where

ywlr
(1) = ∅1zwlr + ywlr

with

∅1 = 1 + λ∅0, ∅0 = 0, λ = 1− n

N
(15)
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and

zwlr = − n

N

{
y + w1byx

(
X − x

)
+ w2byz

(
Z − z

)}
.

A second iteration with ywlr
(1) as an intuitive predictor of yi,(i ∈ s), in (14) would

culminate in ywlr
(2) given by

ywlr
(2) = ∅2zwlr + ywlr,

where ∅2 = 1 + λ∅1.
Continuing in this way, we would, at the kth iteration, obtain as

ywlr
(k) = ∅kzwlr + ywlr,

where ∅k = 1 + λ∅k−1 =
1−λk

1−λ .

Thus, ywlr
(k) can also be expressed as

ywlr
(k) =

(
1− λk

)
y + λkywlr, (16)

where ywlr
(k) is called as the weighted linear regression estimator of order k. For

k=0, ywlr
(k)=ywlr i.e., ywlr

(k)is the weighted linear regression estimator and for
k → ∞, we have λk → 0 and ywlr

(k)=y. Again, if we draw samples of fixed sizes from
an infinite population, then n

N → 0. Hence ywlr
(k) becomes ywlr.

The bias of ywlr
(k) to o

(
1
n

)
can be written as

B(ywlr
(k)) = λk N(N − n)

n(N − 1)(N − 2

[
w1βyx

(
µ300

S2
x

− µ210

Syx

)
+ w2βyz

(
µ003

S2
z

− µ012

Syz

)]
.

(17)
If k ≥ 1, then this hierarchic weighted linear regression estimator possesses smaller
bias than that of the customary weighted linear regression estimator. The mean square
error of ywlr

(k) to o
(
1
n

)
can be written as

MSE(ywlr
(k)) =

(
1

n
− 1

N

)
S2
y [1 + λ2k

(
w2
1ρ

2
yx + w2

2ρ
2
yz + 2w1w2ρyxρyzρxz

)
− 2λk

(
w1ρ

2
yx + w2ρ

2
yz

)
]. (18)

Again, by obtaining the optimum value of k, we can minimize V (ywlr
(k)). So

λk =
w1ρ

2
yx + w2ρ

2
yz

w2
1ρ

2
yx + w2

2ρ
2
yz + 2w1w2ρyxρyzρxz

. (19)

By putting the optimum value of k, in the mean squared error of hierarchic predictive
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weighted linear regression estimator, we have

M(ywlr
(k)) =

(
1

n
− 1

N

)
S2
y

[
1−

w1ρ
2
yx + w2ρ

2
yz

w2
1ρ

2
yx + w2

2ρ
2
yz + 2w1w2ρyxρyzρxz

]
. (20)

4. Efficiency comparison of the proposed estimator vis-à-vis the
competing estimators

ywlr
(k) will be more efficient than ywlr, if

w1ρ
2
yx + w2ρ

2
yz

w2
1ρ

2
yx + w2

2ρ
2
yz + 2w1w2ρyxρyzρxz

<
1 + λk

2
(21)

and ywlr
(k) will be more efficient than y, if

w1ρ
2
yx + w2ρ

2
yz

w2
1ρ

2
yx + w2

2ρ
2
yz + 2w1w2ρyxρyzρxz

<
λk

2
. (22)

Thus, combining equation (21) and (22), we find that the estimator ywlr
(k) will be

more efficient than ywlr and y if

λk

2
<

w1ρ
2
yx + w2ρ

2
yz

w2
1ρ

2
yx + w2

2ρ
2
yz + 2w1w2ρyxρyzρxz

<
1 + λk

2
. (23)

The bounds on
w1ρ2

yx+w2ρ2
yz

w2
1ρ

2
yx+w2

2ρ
2
yz+2w1w2ρyxρyzρxz

given in equation(23) are called the

efficiency bounds. By choosing values of the sampling fraction f(= n
N ) and hence

λ(= 1 − f), we have prepared and presented in the Appendix a Table which gives

the bound on
w1ρ2

yx+w2ρ2
yz

w2
1ρ

2
yx+w2

2ρ
2
yz+2w1w2ρyxρyzρxz

for which equation (23) will be satisfied, i.e.,

ywlr
(k) will be more efficient than ywlr and y.

Furthermore, with a view to finding the percentage gain in efficiency of ywlr

and ywlr
(k) with respect to y and ywlr when k is optimally determined, the following

formulae are considered:

G1 =

[
V (y)

M(ywlr)
− 1

]
×100, G2 =

[
V (y)

M(ywlr
(k))

− 1

]
×100 and G3 =

[
V (ywlr))

M(ywlr
(k))

− 1

]
×100.

5. Numerical Illustration

For the purpose of numerical illustrations, we have considered 8 natural populations
from various sources as detailed in the following Table:

146



Asian Journal of Statistical Sciences K.B. Pandaa and P.P. Mohanty b

Table 1. Population data sets
Population N n ρyx ρyz w1 = 1− w2

I: Gujarati (1978)
Y: Telephone Ownership in Singapore. 22 6 0.972 -0.850 2.271
X: Per capita GDP in Singapore.
II: Gujarati (1978)
Y: GDP deflator for domestic goods, 15 5 0.989 -0.976 0.708
X: GDP deflator for imports
III: Gujarati (1978)
Y: Real gross product 15 5 0.886 -0.952 -0.756
X: Real capital income
IV: Gujarati (1978)
Y: Plant expenditures 22 6 0.990 -0.891 1.182
X: Sales
V: Cochran (1977)
Y: Sizes of 49 large U.S. Cities in 1930 49 8 0.981 -0.182 1.011
X: Sizes of 49 large U.S. Cities in 1930
VI: Maddala and Lahiri(2012)
Y: Imports 18 3 0.984 -0.926 1.620
X: Consumption
VII: DNase (R Dataset)
Y: concentration of the protein, 176 23 0.931 -0.319 1.047
X: optical density
VIII: Swiss (R Dataset)
Y: Education 47 9 0.698 -0.428 1.221
X: Examination.

For assessing the performance of the proposed estimator over the competing
estimators, we have prepared the following Table:

Table 2. MSE of the competing estimators
Estimators y ywlr ywlr

(k)

Population I 949.00 22.95 16.73
Population II 15944.39 245.52 242.70
Population III 3167676 207861.70 195576.90
Population IV 338.32 4.59 4.31
Population V 1585.49 58.78 58.61
Population VI 43.27 0.48 0.38
Population VII 0.62 0.0820 0.08
Population VIII 8.31 4.17 4.12
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Table 3. Gain in efficiency of different estimators
Estimators G1 G2 G3
Population I 4034.39 5569.51 37.13
Population II 6393.88 6469.44 1.16
Population III 1423.93 1519.66 6.28
Population IV 7263.38 7748.52 6.58
Population V 2597.02 2604.77 0.28
Population VI 8863.93 11169.69 25.72
Population VII 658.97 666.31 0.97
Population VIII 99.23 101.35 1.06

The above Table gives the percentage gain in efficiency of the proposed estimator
with respect to its competing estimators, implying thereby that, there is substantial
gain in efficiency of the proposed estimator over its competing estimators.

6. Conclusion:

The proposed weighted linear regression estimator of order k introduced in this paper
is not only endowed with predictive character but also found to be more efficient than
the weighted linear regression estimator and the simple unweighted estimator under
conditions that hold good in practice quite often. Empirical study based on several
natural population datasets provides sufficient ground in support of the estimator
from the standpoint of its practical use in a suitable survey sampling situation.

Acknowledgement

The authors are highly grateful to the reviewers for their valuable suggestions leading
to improvement in the original manuscript.

References

[1] Agrawal, M.C. and Jain, N (1989). A new predictive product estimator, Biometrika 76,
822-823.

[2] Agrawal, M.C. and Sthapit, A.B. (1997). Hierarchic Predictive Ratio-based and Product-
based Estimators and their Efficiencies. Journal of Applied Statistics 24(1), 97-104.

[3] Basu, D. (1971). An essay on the logical foundations of statistical inference, Part I, Foun-
dations of statistical inference, Ed. By V.P. Godambe and D.A. Sportt, New York.

[4] Cochran, W.G. (1977). Sampling Techniques, Third Edition, A Wiley Publication in Ap-
plied Statistics.

[5] Gujarati, D. (1995). Basic Econometrics, Mc-Graw Hill, India, International Editions.
[6] Maddala, G.S. and Lahiri, K. (2012). Introduction to Econometrics, Wiley India(P) Ltd,

Fourth Edition.
[7] Panda, K.B. and Chhatopadhyay, G. (2022). On Efficient Regression Method of Estimation.

Accepted for publication in the International Journal of Mathematics and Statistics.

148



Asian Journal of Statistical Sciences K.B. Pandaa and P.P. Mohanty b

[8] Sahoo, L. N., Dalabehra, M., Mangaraj A. K. (2007). A regression estimator using harmonic
mean of the auxiliary variable, The Philippine Statistician 56(3-4), 31-36.

[9] Smith, T.M.F. (1976). The foundations in survey sampling, a review, Jour. R. Statist. Soc.,
Series A 139, 183-204.

[10] R dataset

Appendix

Table 4. Efficiency bounds of
w1ρ2yx+w2ρ2yz

w2
1ρ

2
yx+w2

2ρ
2
yz+2w1w2ρyxρyzρxz

for various values of f and

k.
k

f 1 2 5 10 15 20
0.05 (0.475, 0.975) (0.451, 0.951) (0.387, 0.887) (0.299, 0.799) (0.232, 0.732) (0.179. 0.679)
0.10 (0.450, 0.950) (0.405, 0.905) (0.295, 0.795) (0.174, 0.674) (0.103, 0.603) (0.061, 0.561)
0.15 (0.425, 0.925) (0.361, 0.861) (0.221, 0.721) (0.098, 0.598) (0.044, 0.544) (0.019, 0.519)
0.20 (0.400, 0.900) (0.320, 0.820) (0.164, 0.664) (0.054,0.554) (0.017, 0.517) (0.005, 0.505)
0.25 (0.375. 0.875) (0.281, 0.781) (0.118, 0.618) (0.028. 0.528) (0.006. 0.506) (0.001, 0.501)
0.30 (0.350, 0.850) (0.245, 0.745) (0.084, 0.584) (0.014, 0.514) (0.002, 0.502) (0.000, 0.500)
0.40 (0.300, 0.800) (0.180, 0.680) (0.039, 0.539) (0.003, 0.503) (0.000, 0.500) (0.000, 0.500)
0.50 (0.250, 0.750) (0.125, 0.625) (0.015, 0.515) (0.000, 0.500) (0.000, 0.500) (0.000, 0.500)
0.60 (0.200, 0.700) (0.080, 0.580) (0.005, 0.505) (0.000, 0.500) (0.000, 0.500) (0.000, 0.500)
0.75 (0.125, 0.625) (0.031, 0.531) (0.000, 0.500) (0.000, 0.500) (0.000, 0.500) (0.000, 0.500)

Table 4 is relevant in view of locating a suitable value of k for given values of
w1ρ2

yx+w2ρ2
yz

w2
1ρ

2
yx+w2

2ρ
2
yz+2w1w2ρyxρyzρxz

and f. As regards knowledge of the pivotal quantity, it can

be said that the knowledge of ρyx, ρyz and ρxz are known in advance from a pilot
survey or from the past experience, if any, which will remain stable over a period of
time. The above table gives more than one values of k which results in better perfor-
mance of the proposed estimator over its competing estimators. The optimal value of

k which is given in equation (19), provided that
w1ρ2

yx+w2ρ2
yz

w2
1ρ

2
yx+w2

2ρ
2
yz+2w1w2ρyxρyzρxz

< 1. Even

if the exact optimal value of k is not available, a satisfactory value of k that offers the
superiority of our proposed estimator might still be found as exhibited by Table 4.
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